Understanding ADHD and Learning Disability Part VI: How is ADHD treated?

This is the sixth in a series on understanding Attention Deficit/Hyperactivity Disorder (ADHD).


ADHD is commonly treated with parent education, school-based interventions, and medications such as stimulants (e.g., methylphenidate) and newer, nonstimulant drugs such as atomoxetine. Adults benefit from the same medications as children and may find some behavioural therapies helpful. On the behavioral side, children can be taught strategies for staying focused on a task such as following a detailed schedule, or for organizing materials. Adult ADHD can be a family problem as well as an individual problem. Because the symptoms of the disorder often wreak havoc on every member of the family, not just the individual with adult ADHD, it’s important for the entire group to undergo family therapy, even if the ADHD parent is already getting individual counselling. It is best to begin family therapy as soon as it becomes clear that the symptoms of adult ADHD are interfering with normal family functioning and thus avoid crises and emergencies that may take months or years to resolve. Family therapy may include teaching family members new skills and coping strategies, and therapy in which family members support and encourage each other and learn to communicate more effectively.

Drug treatment of ADHD

Many children with ADHD may also need medication. The use of stimulants to treat ADHD was first described in 1937.Since the late 1960s, stimulants such as Ritalin® or Adderall® have been prescribed to treat children with ADHD.

2011-12 shortage in U.S. market

In 2011 and 2012, there was a shortage of Ritalin® and Adderall® in U.S. pharmacies. Some say the shortage was caused by the US Drug Enforcement Administration’s (DEA) annual limits on the manufacture of controlled substances. The DEA argues that drug manufacturers had caused the shortage by applying their quotas toward more lucrative kinds of amphetamine-based medications. The shortage was resolved by November 2012. Currently, between 4 and 6 million children in the United States take one of these medications, which reduce hyperactivity and impulsivity, help improve the ability to focus, and even improve physical coordination. In fact, medications are so effective in helping people with ADHD that a recent shortage wreaked havoc for many families

Drug action

Nonetheless, there is concern about giving children a drug that is potentially addictive. Methylphenidate, the active ingredients in Ritalin®, acts like a weak form of cocaine to increase dopamine and noradrenaline levels but tend to do it all over the brain sometimes resulting in unwanted side-effects such as nervousness, drowsiness, insomnia, suspicion and paranoia. Concerta®is a slow release of methylphenidate while Daytranta® delivers the drug via a skin patch, similar to those used for nicotine replacement therapy.Adderall® is a mixture of amphetamine salts which also increase dopamine and noradrenaline levels but has a higher potential for abuse than Ritalin®.


In addition, there is a worry that ADHD may be over-diagnosed, leading to the diagnosis and treatment of high-energy children who have difficulty in the classroom, but are medically normal. For this reason the effectiveness of treatments should be re-evaluated in each person on a regular basis to determine if the current treatment continues to be optimal. There are some reports that daily intake of fish oil can be helpful.

Related Reading

Part 1: Understanding ADHD and Learning Disability

Part 2: Understanding ADHD and Learning Disability

Part 3: Understanding ADHD and Learning Disability

Part 4: Understanding ADHD and Learning Disability

Part 5: Understanding ADHD and Learning Disability



Could there an evolutionary advantage in having ADHD?

Ariaal Elder

Ariaal Elder. The Ariaal are northern Kenyan pastoralists.

This is the fourth in a series on understanding Attention Deficit/Hyperactivity Disorder (ADHD). Today I want to examine if there is in fact an evolutionary advantage in having ADHD.

ADHD is strongly genetic and the genes involved regulate the levels of two neurotransmitters called dopamine and noradrenaline (noradrenaline is called norepinephrine in North America) – chemicals which act as messengers between nerve cells.

Hyperactivity has long been part of the human condition and some ADHD – linked genes are more common in nomadic populations and those with more of a history of migration. In fact,the health status of nomadic men such as those from the Ariaal people in northern Kenya was higher if they had an ADHD – linked gene. However, recently settled Ariaal men seemed to have slightly worse health.

ADHD – ‘the don’t fence me in’ gene

In nomadic Ariaal society,  those with ADHD may be better in tasks involving risk, competition, and/or unpredictable behavior (i.e. exploring new areas, finding new food sources, etc.). For instance, an Ariaal person killing a lion is highly respected and in these situations, ADHD would have been beneficial to the society as a whole even while severely detrimental to the individual.In addition, women in general are more attracted to males who are risk takers, thereby promoting ADHD in the gene pool. This might help explain why ADHD-linked genes have survived to the present day but are more suited to a previous nomadic, risk-taking lifestyle.

Like mother – like son

More recent research suggests that because ADHD is more common in mothers who are anxious or stressed that ADHD is a mechanism of priming the child with the necessary traits for a stressful or dangerous environment, such as increased impulsivity and explorative behaviour etc.

Journal reference: BMC Evolutionary Biology (DOI: 10.1186/1471-2148-8-173)

Part 1: Understanding ADHD and Learning Disability

Part 2: Understanding ADHD and Learning Disability

Part 3: Understanding ADHD and Learning Disability




Understanding Attention Deficit/Hyperactivity Disorder (ADHD) Part 2

In part two of my latest series on attention deficit/hyperactivity disorder (ADHD) we take a closer look at the nature of the disorder.

These positron emission tomography (PET) scans show that patients with ADHD had lower levels of dopamine transporters in the nucleus accumbens, a part of the brain’s reward center, than control subjects.

What is attention deficit/hyperactivity disorder?

Do you remember a classmate who just could not sit still or another who just sat quietly in the corner, day dreaming and looking out the window but when called on by the teacher did not know what was going on? Today both of these children might be diagnosed with ADHD. Indeed some still argue that there is no such thing as ADHD – that it is an artificially conceived diagnosis to aid the selling of prescription drugs and that in previous times a child with ‘ADHD’ was no more than considered to be no more than ‘bored’,’ restless’ or ‘giddy’.


ADHD was first described more than 100 years ago and its symptoms include excessively inattentive, hyperactive, or impulsive behaviours. For instance, children with ADHD find it more difficult to focus and to complete their schoolwork. ADHD affects up to eight in one hundred children and in over half the cases, it continues to persist into adulthood.Although most individuals with ADHD do not outgrow the disorder, their symptoms often change as they grow older, with less hyperactivity as adults. Problems with attention tend to continue into adulthood. There is no cure for ADHD at this time.

Possible causes

Recent brain imaging studies have shown a reduction in the levels of the neurotransmitters dopamine and noradrenaline in at least some people with the disorder. Because the nerve circuits in the prefrontal brain regions, which are normally involved in attention, require high levels of dopamine and noradrenaline stimulation, reduced levels of these two neurotransmitters could potentially lead to the weakened regulation of attention and behavior observed in ADHD .Altered brain activity also has been observed in particular nerve circuits connecting the cortex (outer part), striatum (deeper parts), and cerebellum (back of the neck), particularly in the right brain hemisphere with a delay in cortical development seen in some children with ADHD.
In part three of this series,  I will explain more what neuroscientists mean by ‘attention’, where it is found in the brain and how it is affected in ADHD.

Other Sources:

Part 1: Understanding ADHD and Learning Disability


Understanding ADHD and Learning Disability

Attention deficit/hyperactivity disorder (ADHD)and the learning disability which often accompanies it came up in conversation with students on the Family Support Course during my recent visit to the Bedford Row Family Project in Limerick. There was concern that ADHD was not being accurately diagnosed and that its treatment was inadequate at best.

In this first in a series of posts on ADHD Professor David Anderson explains how the current medical understanding of ADHD as merely a chemical imbalance in the levels of the two neurotransmitters dopamine and noradrenaline is not working and shows that by investigating a strain of hyperactive fruit fly (Drosophila), ADHD and learning disability involve two separate nerve pathways in the brain. These new findings may help scientists discover more selective treatments for these surprisingly commonplace disorders.

If you suffer from ADHD and/or a learning disability then this video may help you connect your personal experience with what the scientists are now discovering

Further reading for those interested in the scientific experiments:

  1. Lebestky et al. (2009). Neuron, 64 (4), 522-36 PMID: 19945394
  2. Wang L, & Anderson DJ (2010). Nature, 463 (7278), 227-31 PMID: 19966787

Weekly Neuroscience Update

Research from the University of Southampton, which examines how dolphins might process their sonar signals, could provide a new system for man-made sonar to detect targets, such as sea mines, in bubbly water.

Evidence is mounting that exercise provides some protection from memory loss and Alzheimer’s disease, with three new studies showing that a variety of physical activities are associated with healthier brains in older adults.

Researchers  have discovered an important clue to how the human brain —important clue to how the human brain — which is constantly bombarded with millions of pieces of visual information, can filter out what’s unimportant and focus on what’s most useful.

Scientists at the California Institute of Technology (Caltech) pioneered the study of the link between irregularities in the immune system and neurodevelopmental disorders such as autism a decade ago. Since then, studies of postmortem brains and of individuals with autism, as well as epidemiological studies, have supported the correlation between alterations in the immune system and autism spectrum disorder.

Researchers at Aalto University in Finland have developed the world’s first device designed for mapping the human brain that combines whole-head magnetoencephalography (MEG) and magnetic resonance imaging (MRI) technology. MEG measures the electrical function and MRI visualizes the structure of the brain. The merging of these two technologies will produce unprecedented accuracy in locating brain electrical activity non-invasively. 

Cognition psychologists have discovered why stressed persons are more likely to lapse back into habits than to behave goal-directed. The researchers have now reported in the Journal of Neuroscience that the interaction of the stress hormones hydrocortisone and noradrenaline shut down the activity of brain regions for goal-directed behaviour. The brain regions responsible for habitual behaviour remained unaffected.

Raising levels of the neurotransmitter dopamine in the frontal cortex of the brain significantly decreased impulsivity in healthy adults, in a study conducted by researchers at the Ernest Gallo Clinic and Research Center at the University of California, San Francisco