Why my ultimate exam tip is an exam sip!

As the Junior and Leaving Certificate exams kick off today, I want to wish you all good luck and to remind you not to forget to bring a bottle of water with you into your exams!

It’s that time of the year again when the two big state exams – junior and leaving certificates kick off for a generation of Irish youths.  The leaving cert is the hardest exam I’ve ever had to sit  – throughout my years as a student in University, and afterwards working in a laboratory as a neuroscientist, nothing really compared to the intensity of that exam.  

Drink water to improve your grade!

Scientists from the University of East London report that bringing a bottle of water with you into your exam boosts your grade. Students who brought water with them did better in the exam than those without water.  The researchers accounted for the 447 undergraduate students’ prior grades, so it’s not just a matter of smarter students being more likely to bring a bottle of water into the exam.

Drinking water makes you smarter

Controlling for ability from previous coursework results, scientists found those who drank water during the exam scored an average of 5% higher than those who did without.

The ultimate exam tip – is an exam sip!

Scientists explain that there may be a few reasons for this link between bringing water (and presumably drinking it) and better grades:

  1. Previous studies have shown that a dehydration level of just 1% of your body weight reduces your thinking functions, so it makes sense that drinking water improves mental performance.
  2. The desire to drink water (thirst) is driven by a small protein (a peptide) called vasopressin in the brain. Vasopressin has also been implicated in making new memories and with the positive feelings associated with social behaviour thereby leading to a better performance by reducing anxiety in an exam situation,
  3. By offering a momentary distraction – taking a sip of water – drinking water may also break a chain of thoughts and free the mind to focus on the task at hand, leading to better performance – thereby reducing anxiety during the exam.
  4. Drinking water might also just activate a placebo affect – if you believe water boosts your brain power, that belief alone could improve your performance.

The research continues – either way, don’t forget that bottle of water on your next exam.

References 

Lim MM, Young LJ (2004). “Vasopressin-dependent neural circuits underlying pair bond formation in the monogamous prairie vole”. Neuroscience 125 (1): 35–45.

Know Your Neurons

selection-of-neuron-types

Different Types of Neurons A. Purkinje cell B. Granule cell C. Motor neuron D. Tripolar neuron E. Pyramidal Cell F. Chandelier cell G. Spindle neuron H. Stellate cell (Credit: Ferris Jabr; based on reconstructions and drawings by Cajal)

The Know Your Neurons series on the  Scientific American website features some great information on the discovery and naming of neurons, alongside some terrific historical images.

human-neurons-stained

Human hippocampus stained with Golgi’s method (Credit: Wikimedia Commons)

drawing-of-neurons

Cajal’s drawing of Purkinje cells and granule cells in a pigeon’s brain (Credit: Wikimedia Commons)

Learn more: click here

Weekly Neuroscience Research Update

Several specific regions of our brains are activated in a two-part process when we are exposed to deceptive advertising, according to new research conducted by a North Carolina State University professor. The work opens the door to further research that could help us understand how brain injury and aging may affect our susceptibility to fraud or misleading marketing.

We make our eye movements earlier or later in order to coordinate with movements of our arms, New York University neuroscientists have found. Their study, which appears in the journal Neuron, points to a mechanism in the brain that allows for this coordination and may have implications for rehabilitation and prosthetics.

The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain systems that control cognitive functions has remained a mystery. A study by researchers at Wake Forest Baptist Medical Center and the McGovern Institute of the Massachusetts Institute of Technology shows how new information is encoded in neurons of the prefrontal cortex, the area of the brain involved in planning, decision making, working memory and learning.

A team of academic researchers has identified the intracellular mechanisms regulated by vitamin D3 that may help the body clear the brain of amyloid beta, the main component of plaques associated with Alzheimer’s disease.

Opening the door to the development of thought-controlled prosthetic devices to help people with spinal cord injuries, amputations and other impairments, neuroscientists at the University of California, Berkeley, and the Champalimaud Center for the Unknown in Portugal have demonstrated that the brain is more flexible and trainable than previously thought.

Emotion-sensing computer software that models and responds to students’ cognitive and emotional states – including frustration and boredom – has been developed by University of Notre Dame Assistant Professor of Psychology Sidney D’Mello and colleagues from the University of Memphis and Massachusetts Institute of Technology.

Weekly Neuroscience Update

A new study reveals for the first time that activating the brain’s visual cortex with a small amount of electrical stimulation actually improves our sense of smell. The finding revises our understanding of the complex biology of the senses in the brain.

By training birds to ‘get rhythm’, scientists uncover evidence that our capacity to move in time with music may be connected with our ability to learn speech.

Daily doses of a drug used to treat Parkinson’s disease significantly improved function in severely brain-injured people thought to be beyond the reach of treatment. Scientists have reported on the first rigorous evidence to date that any therapy reliably helps such patients.

Remembering where we left our keys requires at least three different regions of the brain to work together, a study published in the Journal of Neuroscience says.

If you’re a left brain thinker, chances are you use your right hand to hold your cell phone up to your right ear, according to a new study from Henry Ford Hospital in Detroit.

People who experience a traumatic brain injury show a marked decline in the ability to make appropriate financial decisions in the immediate aftermath and a continued impairment on complex financial skills six months later, according to new research from the University of Alabama at Birmingham.

For the first time, a team led by Carnegie Mellon University neuroscientists has identified how different neural regions communicate to determine what to visually pay attention to and what to ignore. This finding is a major discovery for visual cognition and will guide future research into visual and attention deficit disorders.

Finally this week, Ireland’s neurological charities have come together to launch a new patient information and services website in time for National Brain Awareness Week which takes place next week (05 – 11 March).

Ode To The Brain

Through the powerful words of scientists Carl Sagan, Robert Winston, Vilayanur Ramachandran, Jill Bolte Taylor, Bill Nye, and Oliver Sacks, this wonderful video covers different aspects of the brain including its evolution, neuron networks, folding, and more.

Some of my favourite quotes from the video:

It’s amazing to consider that I’m holding in my hands the place where someone once felt, thought, and loved… [Robert Winston]

Here is this mass of jelly you can hold in the palm of your hands
And it can contemplate the vastness of interstellar space [Vilayanur Ramachandran]

No longer at the mercy of the reptile brain we can change ourselves. Think of the possibilities [Bill Nye]

Think of your brain as a newspaper, think of all the information it can store, but it doesn’t take up too much room, because it’s folded [Oliver Sacks]

It is the most mysterious part of the human body, and  yet it dominates the way we live our adult lives. It is the brain [Robert Winston]

The charitable brain

What motivates us to donate to charity? It seems that neuroscience might have some of the answers.

Michael Rosen reports on a new study from researchers at Texas Tech University into charitable giving behavior.

Researchers used brain scans to look at what motivates individuals to make a charitable bequest commitment as well as what de-motivates them. This is the first time that Magnetic Resonance Imaging has been used to examine charitable bequest decision making.

The three key findings of the report are:

  • Bequest giving and current giving stimulate different parts of the brain. This suggests that different motivators and de-motivators are at work.
  • Making a charitable bequest decision involves the internal visualization system, specifically those parts of the brain engaged for recalling autobiographical events, including the recent death of a loved one.
  • Charitable bequest decision making engages parts of the brain associated with, what researchers call, “management of death salience.” In other words, and not surprisingly, charitable bequest decision making involves reminders of one’s mortality.

You can read Michael Rosen’s article in full here

Weekly Brain Research Update

Even for healthy people, stressful moments can take a toll on the brain, a new study from Yale University suggests.

Neuroscientists at the Johns Hopkins University School of Medicine have discovered how the sense of touch is wired in the skin and nervous system.

A new study of how the brain processes unexpected events found that neurons in two important structures handle both positive and negative surprises.

New research finds that brain activity increases during delusional thinking, a finding that may allow new interventions and retraining for people with the disorder.

A new UC Davis study shows how the brain reconfigures its connections to minimize distractions and take best advantage of our knowledge of situations.

Researchers from the Medical Research Council (MRC) in the UK have found a protein made by blood vessels in the brain that could be a good candidate for regenerative therapies that stimulate the brain to repair itself after injury or disease.

Drinking alcohol leads to the release of endorphins in areas of the brain that produce feelings of pleasure and reward, according to a study led by researchers at the Ernest Gallo Clinic and Research Center at the University of California, San Francisco

 

Weekly Round Up

Image Source: The Dana Foundation

Our senses of sight and hearing work closely together, perhaps more than people realize, a new UCLA psychology study shows.

A team of neurobiologists  has shown for the first time that cortex, the largest area of the brain that is typically associated with higher functions such as perception and cognition, is also a prominent site of emotional learning.

Tiny electric currents applied across regions of the brain can improve hand movements in recovering stroke patients for a short period, an Oxford University study has demonstrated.

For the first time, scientists have proven that cannabis harms the brain. But the same study challenges previously-held assumptions about use of the drug, showing that some brain irregularities predate drug use.

How might keeping patients awake during surgery lead to the more successful removal of brain tumours? James Keidel, in his shortlisted entry for the 2011 Wellcome Trust Science Writing Prize, explains.

Researchers from the University of Bristol have discovered that a chemical compound in the brain can weaken the synaptic connections between neurons in a region of the brain important for the formation of long-term memories. The findings, published in the Journal of Neuroscience, may also provide a potential explanation for the loss of memory associated with Alzheimer’s.