Weekly Neuroscience Update

Getting a grip—literally— by clenching your right fist before remembering information and your left when you want to remember it can boost your recall, according to the latest study. This strange trick may work because clenching your hands activates the side of the brain that handles the function— in right-handed people, for instance, the left side of the brain is primarily responsible for encoding information and the right for recalling memory. (If you are left-handed, the opposite applies).

Mathematicians from Queen Mary, University of London will bring researchers one-step closer to understanding how the structure of the brain relates to its function in two recently published studies.

Greater adherence to a Mediterranean diet (MeD) is associated with a lower likelihood of incident cognitive impairment (ICI), especially among those without diabetes, according to a study published in the April 30 issue of Neurology.

The widespread belief that dopamine regulates pleasure could go down in history with the latest research results on the role of this neurotransmitter. Researchers have proved that it regulates motivation, causing individuals to initiate and persevere to obtain something either positive or negative.

Supposedly ‘primitive’ reflexes may involve more sophisticated brain function than previously thought, according to researchers at Imperial College London.

The production of a certain kind of brain cell that had been considered an impediment to healing may actually be needed to staunch bleeding and promote repair after a stroke or head trauma, researchers at Duke Medicine report.

For any addiction, external  cues and stress can trigger  cravings that are hard to resist, and the latest research points to an area of  the brain that might be responsible  for sabotaging recovery.

Weekly Neuroscience Update

UC Santa Barbara scientists turned to the simple sponge to find clues about the evolution of the complex nervous system and found that, but for a mechanism that coordinates the expression of genes that lead to the formation of neural synapses, sponges and the rest of the animal world may not be so distant after all.

Scientists have discovered a mechanism which stops the process of forgetting anxiety after a stress event. In experiments they showed that feelings of anxiety don’t subside if too little dynorphin is released into the brain. The results can help open up new paths in the treatment of trauma patients. The study has been published in the current edition of the Journal of Neuroscience.

The biological role of a gene variant implicated in multiple sclerosis (MS) has been determined by researchers at Oxford University. The finding explains why MS patients do badly on a set of drugs used successfully in other autoimmune diseases, such as rheumatoid arthritis and inflammatory bowel disease – something that has been a puzzle for over 10 years.

A clinical trial of an Alzheimer’s disease treatment developed at MIT has found that the nutrient cocktail can improve memory in patients with early Alzheimer’s. The results confirm and expand the findings of an earlier trial of the nutritional supplement, which is designed to promote new connections between brain cells.

An international consortium, has taken cells from Huntington’s Disease patients and generated human brain cells that develop aspects of the disease in the laboratory. The cells and the new technology will speed up research into understanding the disease and also accelerate drug discovery programs aimed at treating this terminal, genetic disorder. 

Stem cells that come from a specific part of the developing brain help fuel the growth of brain tumors caused by an inherited condition, researchers at Washington University School of Medicine in St. Louis report.

Findings from the first study directly examining gamma-aminobutyric acid (GABA) concentrations in the brains of children with ADHD were published last week in the Archives of General Psychiatry. In this new article researchers report finding significantly lower concentrations of GABA in the cerebral cortexes of children diagnosed with ADHD, compared with typically developing children. GABA is the brain’s main inhibitory neurotransmitter. The differences were detected in the region of the brain that controls voluntary movement.

People who are born deaf process the sense of touch differently than people who are born with normal hearing, according to research funded by the National Institutes of Health. The finding reveals how the early loss of a sense— in this case hearing—affects brain development. It adds to a growing list of discoveries that confirm the impact of experiences and outside influences in molding the developing brain. The study is published in the July 11 online issue of The Journal of Neuroscience.

Neuronal abnormalities in the brains of children with obstructive sleep apnea are reversible with treatment, a prospective study has shown.

Although many areas of the human brain are devoted to social tasks like detecting another person nearby, a new study has found that one small region carries information only for decisions during social interactions. Specifically, the area is active when we encounter a worthy opponent and decide whether to deceive them. A brain imaging study conducted by researchers at the Duke Center for Interdisciplinary Decision Science (D-CIDES) put human subjects through a functional MRI brain scan while playing a simplified game of poker against a computer and human opponents. Using computer algorithms to sort out what amount of information each area of the brain was processing, the team found only one brain region — the temporal-parietal junction, or TPJ — carried information that was unique to decisions against the human opponent.

 

What is dopamine?

Dopamine is a neurotransmitter that helps control the brain’s reward and pleasure centers. Dopamine also helps regulate movement and emotional responses, and it enables us not only to see rewards, but to take action to move toward them.

Dopamine deficiency results in Parkinson’s Disease, and people with low dopamine activity may be more prone to addiction. Most abused drugs cause the release of dopamine and this is thought to contribute to their addictive properties.

This video describes some of the cognitive functions of dopamine in your brain.