Slow brain waves play key role in coordinating complex activity

UCSF neurosurgeons place 64-electrode grids on the surface of the brain's temporal and frontal lobes to locate regions where epileptic seizures originate. These grids allowed UC Berkeley neuroscientists to study the interaction of brain waves during simple tasks, such as word recognition or hand movements. (Images courtesy the Knight Lab)

UCSF neurosurgeons place 64-electrode grids on the surface of the brain’s temporal and frontal lobes to locate regions where epileptic seizures originate. These grids allowed UC Berkeley neuroscientists to study the interaction of brain waves during simple tasks, such as word recognition or hand movements. (Images courtesy the Knight Lab)

While it is widely accepted that the output of nerve cells carries information between regions of the brain, it’s a big mystery how widely separated regions of the cortex involving billions of cells are linked together to coordinate complex activity. Now a new study by neuroscientists at the University of California, Berkeley, and neurosurgeons and neurologists at UC San Francisco (UCSF) is beginning to answer that question.

“One of the most important questions in neuroscience is: How do areas of the brain communicate?” said Dr. Robert Knight, professor of psychology, Evan Rauch Professor of Neuroscience and director of the Helen Wills Neuroscience Institute at UC Berkeley. “A simple activity like responding to a question involves areas all over the brain that hear the sound, analyze it, extract the relevant information, formulate a response, and then coordinate your lips and mouth to speak. We have no idea how information moves between these areas.”

By measuring electrical activity in the brains of pre-surgical epilepsy patients, the researchers have found the first evidence that slow brain oscillations, or theta waves, “tune in” the fast brain oscillations called high-gamma waves that signal the transmission of information between different areas of the brain. In this way, the researchers argue, areas like the auditory cortex and frontal cortex, separated by several inches in the cerebral cortex, can coordinate activity.

“If you are reading something, language areas oscillate in theta frequency allowing high-gamma-related neural activity in individual neurons to transmit information,” said Knight. “When you stop reading and begin to type, theta rhythms oscillate in motor structures, allowing you to plan and execute your motor response by way of high gamma. Simple, but effective.”

The findings are reported in the Sept. 15 issue of Science.

Read more at UC Berkeley News

Neural Simulations Hint at the Origin of Brain Waves

For almost a century, scientists have been studying brain waves to learn about mental health and the way we think. Yet the way billions of interconnected neurons work together to produce brain waves remains unknown. Now, scientists from EPFL’s Blue Brain Project in Switzerland, at the core of the European Human Brain Project, and the Allen Institute for Brain Science in the United States, show in the July 24th edition of the journal Neuron how a complex computer model is providing a new tool to solve the mystery.

Weekly Neuroscience Update

xbox

When selecting a video game to play, opting to turn on your Wii may provide a different experience than playing your Xbox, according to a study from Mississippi State University.

Excessive alcohol use accounts for 4% of the global burden of disease, and binge drinking particularly is becoming an increasing health issue. A new review article published Cortex highlights the significant changes in brain function and structure that can be caused by alcohol misuse in young people.

Working with patients with electrodes implanted in their brains, researchers have shown for the first time that areas of the brain work together at the same time to recall memories. The unique approach promises new insights into how we remember details of time and place.

Researchers at the University of Glasgow are hoping to help victims of stroke to overcome physical disabilities by helping their brains to ‘rewire’ themselves.

Keeping active can slow down the progression of memory loss in people with Alzheimer’s disease, a study has shown.

Neuroscientists have released the results of a new study that examines how fear responses are learned, controlled, and memorized. They show that a particular class of neurons in a subdivision of the amygdala plays an active role in these processes.

Neuroscience researchers from Tufts University have found that our star-shaped brain cells, called astrocytes, may be responsible for the rapid improvement in mood in depressed patients after acute sleep deprivation. This in vivo study, published in the current issue ofTranslational Psychiatry, identified how astrocytes regulate a neurotransmitter involved in sleep. The researchers report that the findings may help lead to the development of effective and fast-acting drugs to treat depression, particularly in psychiatric emergencies.

UC Berkeley neuroscientists have found that the slow brain waves generated during the deep, restorative sleep we typically experience in youth play a key role in transporting memories from the hippocampus – which provides short-term storage for memories – to the prefrontal cortex’s longer term “hard drive.”

Researchers have found altered connectivity in the brain network for body perception in people with anorexia: The weaker the connection, the greater the misjudgement of body shape.

A group of scientists planning to map all the major connections in the human brain began studying their first test subjects in August. The $30 million Human Connectome Project will trace the main neural pathways that link the roughly 500 major regions in the brain, illuminating how biological circuitry underlies our mental functions. MRI scans of 1,200 people, including 300 pairs of twins, will be used to compile an atlas of communication routes throughout the brain. The resulting blueprint will also reveal how brain connectivity varies from person to person.